Publications:
•
Ochal, A.; Przadka, W; Sofonea, M. and Tarzia, D.,
Modelling, analysis, and numerical simulation of a spring-rods system with unilateral constraints,
Mathematics and Mechanics of Solids 29 (2024), 246-263
•
Bartman, P., Ochal, A. and Sofonea, M.,
Duality arguments in the analysis of a viscoelastic contact problem,
Communications in Nonlinear Science and Numerical Simulation, vol. 128 (2024), 107581 (14 pages)
•
Migorski, S., Yao, JC. and Zeng, SD.,
A class of elliptic quasi-variational-hemivariational inequalities with applications,
Journal of Computational and Applied Mathematics 421 (2023), 114871 (15 pages)
•
Jureczka, M.; Ochal, A. and Bartman, P.,
A nonsmooth optimization approach for time-dependent hemivariational inequalities,
Nonlinear Analysis-Real World Applications 73 (2023), 103871
•
Gariboldi, C.; Ochal, A.; Sofonea, M. and Tarzia, D.,
A convergence criterion for elliptic variational inequalities,
Applicable Analysis (2023)
•
Migorski, S. and Dudek, S.,
Constrained evolutionary variational-hemivariational inequalities with application to fluid flow model,
Communications in Nonlinear Science and Numerical Simulation 127 (2023), 107555
•
Bartman, P.; Bartosz, K.; Jureczka, M. and Szafraniec, P.,
Numerical analysis of a non-clamped dynamic thermoviscoelastic contact problem,
Nonlinear Analysis-Real World Applications 73 (2023), 103870
•
Cen, J.; Nguyen, Van T.; Vetro, C. and Zeng, S.,
Weak solutions to the generalized Navier-Stokes equations with mixed boundary conditions and implicit obstacle constraints,
Nonlinear Analysis-Real World Applications 73 (2023), 103904
•
Yuan, Z.; Peng, Z.; Liu, Z. and Migorski, S.,
A generalized penalty method for a new class of differential inequality system,
Communications in Nonlinear Science and Numerical Simulation 129 (2023), 107704
•
Zeng, S.; Bai, Y. and Nguyen, Van T., Optimal control problems for generalized evolutionary Oseen model,
Journal of Nonlinear and Convex Analysis 24 (2023), 33-40
•
Zeng, S; Bai, Y; Radulescu, Vicentiu D. and Winkert, P.,
An inverse problem for a double phase implicit obstacle problem with multivalued terms,
ESAIM-Control Optimization and Calculus of Variations 29 (2023), 30
•
Zeng, SD. Migorski, S. and Weimin, H.,
A new class of fractional differential hemivariational inequalities with application to an incompressible Navier–Stokes system coupled with a fractional diffusion equation,
Izvestiya: Mathematics 87 (2) (2023), 326–361
•
Migorski, S., Bai, YR. and Dudek, S.,
A class of multivalued quasi-variational inequalities with applications,
Applied Mathematics and Optimization 87 (2023), 32 (25 pages)
•
Migorski, S., Cai, DL. and Dudek, S.,
Differential variational–hemivariational inequalities with application to contact mechanics,
Nonlinear Analysis: Real World Applications 71 (2023), 103816 (25 pages)
•
Zeng, S., Khan, A.A. and Migórski, S.,
A new class of generalized quasi-variational inequalities with applications to Oseen problems under nonsmooth boundary conditions,
Science China Mathematics 66 (2023), (24 pages)
•
Migórski, S. and Cai, DL.,
A New System of Differential Quasi-Hemivariational Inequalities in Contact Mechanics,
Applied Mathematics & Optimization volume 88 (2023), 20 (34 pages)
•
Migorski, S., Ogorzały, J. and Dudek, S.,
A new general class of systems of elliptic quasi-variational–hemivariational inequalities,
Communications in Nonlinear Science and Numerical Simulation 121 (2023), 107243 (26 pages)
•
Migorski, S., Cai, DL. and Xiao, YB.,
Inverse problems for constrained parabolic variational-hemivariational inequalities,
Inverse Problems 39 (2023), 085012
•
Migorski, S. and Cai, DL.,
A general differential quasi variational–hemivariational inequality: Well-posedness and application,
Communications in Nonlinear Science and Numerical Simulation 125 (2023), 107379 (18 pages)
•
Fang, C., Yang, M. and Migorski, S.,
Shape optimization for the Stokes hemivariational inequality with slip boundary condition,
Computers & Mathematics with Applications 146 (2023), 213-224
• Bai, Y.; Papageorgiou, N.S. and Zeng, S.,
A parametric singular (p,q)-equation with convection,
Complex Variables and Elliptic Equations, 68:11 (2023), 1940-1952
•
Jiang, TJ., Cai, DL., Xiao, YB and Migorski, S.,
Time-dependent elliptic quasi-variational-hemivariational inequalities: well-posedness and application,
Journal of Global Optimization (2023), (21 pages)
•
Ochal, A.; Jureczka, M. and Bartman, P.,
A survey of numerical methods for hemivariational inequalities with applications to contact mechanics,
Communications in Nonlinear Science and Numerical Simulation 114 (2022), 106563 (14 pages)
• Bai, Y.; Papageorgiou, N.S. and Zeng, S.,
Anisotropic (p, q)-equations with superlinear reaction,
Ricerche di Matematica (2022)
•
Migorski, S. and Dudek, S.,
A class of variational-hemivariational inequalities for Bingham type fluids,
Applied Mathematics and Optimization 85 (2022), 16 (29 pages)
•
Zhao, J., Migorski, S. and Dudek, S.,
A generalized Stokes system with a non-smooth slip boundary condition,
Philosophical Transactions of the Royal Society A 380 (2022), 20210353 (17 pages)
•
Migorski S.,
Well-posedness of constrained evolutionary differential variational–hemivariational inequalities with applications,
Nonlinear Analysis: Real World Applications 67 (2022), 103593 (22 pages)
•
Bai, YR., Migorski, S., Nguyen, VT. and Peng, JW.,
Existence of solutions to a new class of coupled variational-hemivariational inequalities,
Journal of Nonlinear and Variational Analysis 6 (5) (2022), 499-516
•
Zeng, SD., Migorski, S., Tarzia DA., Zouł and Nguyen, VT.,
A class of elliptic mixed boundary value problems with (p, q)-Laplacian: existence, comparison, and optimal control,
Zeitschrift für angewandte Mathematik und Physik 73 (2022), 151 (17 pages)
•
Migorski, S., Bai, YR. and Zeng, SD.,
A new class of history-dependent quasi variational-hemivariational inequalities with constraints,
Communications in Nonlinear Science and Numerical Simulation 114 (2022), 106686 (15 pages)
•
Zeng, SD., Migorski, S. and Nguyen, V.,
A class of hyperbolic variational-hemivariational inequalities without damping terms,
Advances in Nonlinear Analysis 11 (1) (2022), 1287-1306